102 research outputs found

    The finite element modeling and stability prediction of high-speed spindle system dynamics with spindle-holder-tool joints

    Get PDF
    The stability of high-speed spindle system affects the surface finish and tool life directly, which is an important factor to evaluate its performance. Meanwhile, the spindle dynamics and cutting stability are affected by the structure and dynamics of spindle-holder-tool joints significantly. The joints are simplified as the distribution-spring, and the FEM modeling process of spindle system is proposed based on the thought of parallel rotor system. Taking a vertical machining center as example, the effectiveness of the modeling method is verified. Starting from the stability evaluation criteria and different ways of getting FRF, the influence factors of unconditional and conditional stability regions are analyzed. Based on the proposed model, the influence laws of cutting stability on cutting force amplitude and speed are characterized by the three-dimensional lobes, limit cutting depths and lobe intersections, which provide the theoretical basis for optimizing the processing and improving the cutting stability

    Consensus disturbance rejection for Lipschitz nonlinear multi-agent systems with input delay: a DOBC approach

    Get PDF
    In this paper, a new predictor-based consensus disturbance rejection method is proposed for high-order multi agent systems with Lipschitz nonlinearity and input delay. First, a distributed disturbance observer for consensus control is developed for each agent to estimate the disturbance under the delay constraint. Based on the conventional predictor feedback approach, a non-ideal predictor based control scheme is constructed for each agent by utilizing the estimate of the disturbance and the prediction of the relative state information. Then, rigorous analysis is carried out to ensure that the extra terms associated with disturbances and nonlinear functions are properly considered. Sufficient conditions for the consensus of the multi-agent systems with disturbance rejection are derived based on the analysis in the framework of Lyapunov-Krasovskii functionals. A simulation example is included to demonstrate the performance of the proposed control scheme. (C) 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.National Natural Science Foundation of China [61673034]SCI(E)ARTICLE1,SI298-31535
    • …
    corecore